Functions which are restrictions of $L\sp{p}$-multipliers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functions Which Are Almost Multipliers of Hilbert Function Spaces

We introduce a natural class of functions, the pseudomultipliers, associated with a general Hilbert function space, prove an extension theorem which justifies the definition, give numerous examples and establish the nature of the 1-pseudomultipliers of Hilbert spaces of analytic functions under mild hypotheses. The function 1/z on the unit disc D is almost a multiplier of the Hardy space H: it ...

متن کامل

Which Powers of Holomorphic Functions Are Integrable?

Question 1. Let f(z1, . . . , zn) be a holomorphic function on an open set U ⊂ C. For which t ∈ R is |f |t locally integrable? The positive values of t pose no problems, for these |f |t is even continuous. If f is nowhere zero on U then again |f |t is continuous for any t ∈ R. Thus the question is only interesting near the zeros of f and for negative values of t. More generally, if h is an inve...

متن کامل

Functions Which Are Symmetric about Several Points

If 1(t) is odd about several points (xe , I (x,)) it is to be understood that the exceptional set may depend on x a . BOAS 1) proves among others that if 1(t) is periodic, bounded on a set of positive measure, and satisfies (1) for a set of x's having positive measure then 1(t) is equivalent to a constant (i .e . 1(t) is constant almost everywhere) . He also shows there exists a bounded periodi...

متن کامل

On Functions Which Are Fourier Transforms

1. Let G be a locally compact and abelian group, Gl the dual group. Through this paper, "Ml will denote the set of all bounded Radon measure n on G; this set will be considered as a Banach algebra when provided with the customary norm as the dual of the space Co(G) defined below and with the ring product defined as convolution. If /iGM1, its Fourier transform is by definition the bounded and co...

متن کامل

Which elements of a finite group are non-vanishing?

‎Let $G$ be a finite group‎. ‎An element $gin G$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $G$‎, ‎$chi(g)neq 0$‎. ‎The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$‎, ‎is an undirected graph with‎ ‎vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G‎, ‎ tin T}$‎. ‎Let ${rm nv}(G)$ be the set‎ ‎of all non-vanishi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1975

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1975-0390653-9